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ABSTRACT

We consider bearing estimation of multiple narrow-band
plane waves impinging on an array of sensors. For this
problem, bearing estimation algorithms such as minimum
variance distortionless response (MVDR), multiple signal
classification, and maximum likelihood generally require the
array covariance matrix as sufficient statistics. Interestingly,
the rank of the array covariance matrix is approximately equal
to the number of the sources, which is typically much smaller
than the number of sensors in many practical scenarios. In
these scenarios, the covariance matrix is low-rank and can
be estimated via matrix completion from only a small subset
of its entries. We propose a distributed matrix completion
framework to drastically reduce the inter-sensor communica-
tion in a network while still achieving near-optimal bearing
estimation accuracy. Using recent results in noisy matrix
completion, we provide sampling bounds and show how the
additive noise at the sensor observations affects the recon-
struction performance. We demonstrate via simulations that
our approach sports desirable tradeoffs between communica-
tion costs and bearing estimation accuracy.

Index Terms— Array signal processing, Covariance
analysis, Direction of arrival estimation, Matrix completion

1. INTRODUCTION

Many algorithms for narrow-band direction finding with sen-
sor arrays, parameter estimation of multiple sinusoidal sig-
nals superimposed with noise, and discriminating multiple
overlapped echoes require the covariance matrix of the obser-
vations as sufficient statistics for estimation. Representative
members include minimum variance distortionless response
(MVDR), multiple signal classification (MUSIC), and max-
imum likelihood (ML) [1]. Although these algorithms have
rigorous estimation guarantees, they have an important disad-
vantage when the sensors are untethered: centralized process-
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ing. Hence, wireless communications among the sensors can
create many bottlenecks and critical points of failure.

In a practical system, estimating the array covariance ma-
trix in a distributed fashion can provide the ability to scale, re-
duce adversarial vulnerability, decrease communication costs,
and share processing responsibilities among individual sen-
sors as the number of sensors increase. Distributed processing
over the network implies that the sensors only communicate
with their immediate neighbors on the communication graph
with a message passing scheme that uses constant bandwidth.
In this case, the greatest challenge becomes finding a message
passing scheme and an associated algorithm with provable es-
timation guarantees.

In this paper, we propose propagating local correlation es-
timates over the edges of a communication graph to partially
fill in the entries of the sensor array’s covariance matrix. We
pay particular attention to tree structured graphs generated by
Prim’s algorithm and Dijkstra’s algorithm [2]. Both of these
algorithms take in a set of nodes and construct a tree struc-
tured graph that minimizes a cost function, such as one based
on communication costs. We further propose extensions to
this simple communication model by greedily propagating
additional signal information through the tree in order to in-
crease the number of observed matrix entries when needed.

For the bearing estimation problem, we discuss why the
array covariance matrix is low rank for most practical sce-
narios. Then, we exploit recent results in matrix completion
theory to recover the full covariance matrix from the subset
of observed entries [3, 4]. We provide analytic bounds on the
covariance estimation error as a function of the number of
time snapshots, the additive noise variance, and the number
of filled matrix entries. While doing so, we restate the matrix
sampling bounds in [4] within the context of bearing estima-
tion. We subsequently investigate the accuracy of the bear-
ing estimates based on the recovered covariance matrix using
MVDR and compare the results with the estimates based on
the fully sampled covariance matrix. We show via simulations
that our approach sports desirable tradeoffs between commu-
nication costs and bearing estimation accuracy.

The paper is organized as follows. In Section 2 we provide
the necessary background on signal processing for bearing es-
timation and matrix completion. In Section 3 we provide de-
tails of our distributed estimation approach to determine the
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array covariance matrix and provide performance bounds. In
Section 4 we provide simulation results to demonstrate the
validity of our approach with both synthetic and real-world
data. We conclude in Section 5.

2. BACKGROUND

2.1. Narrow-band bearing estimation problem

The problem of bearing estimation of multiple narrow-band
plane waves with sensor arrays can be reduced to the follow-
ing model [1, 5]:

y(tn) = A(θ)x(tn) +w(tn), n = 1, . . . , N ; (1)

where y ∈ CP×1 (complex) is the noisy data vector of the
sensor network, x ∈ CK×1 is the vector of unknown signal
amplitudes, and w ∈ CP×1 is an additive noise.

In (1),A(θ) ∈ CP×K has the following structure

A(θ) =
[
a(θ1) . . . a(θK)

]
, (2)

where a(θk) ∈ CP×1 is called the steering vector, θk ∈ R
is the bearing of the k-th source, and θ =

[
θ1 . . . θK

]
.

We denote X ∈ CP×N as the source matrix, where X =
[x(t1), . . . ,x(tN )]. The array data matrix Y ∈ CP×N and
the noise matrixW ∈ CP×N are similarly defined.

The objective of the bearing estimation problem is to de-
termine θ given the noisy observations in (1). Without loss
of generality, we focus on 2-D bearing estimation; hence, the
p-th entry in the steering vector a(θk) for the k-th source has
the following well-known expression:

[a(θk)]p = exp {−jωρp cos (ψp − θk)} , (3)

where (ρp, ψp) is the p-th sensor position in polar coordinates
(angle is measured with respect to the horizontal axis) and ω
is the known narrow-band frequency of the sources.

In the sequel, we make the following assumptions:
A1 (Sensor Network): P � K. The number of sensors P
is large compared to the number of sources K. Note that
P > K is a necessary condition for the uniqueness of the
bearing estimates.
A2 (Source Signals): E {[x(ti)]k} = 0, E

{
[x(ti)]

′
k [x(ti)]l

}
=

0 (k 6= l), and E
{

[x(ti)]
′
k [x(tj)]k

}
= 0 (i 6= j). Source sig-

nals are independent from each other and are uncorrelated in
time. The symbols ′ and E denote the Hermitian and expec-
tation operators, respectively.
A3 (Noise): [w(ti)]p ∼ N

(
0, σ2

)
. The noise has an inde-

pendent and identically distributed (iid) Gaussian distribution
with zero mean and known variance σ2.

2.2. Covariance based bearing estimation algorithms

Many algorithms to estimate θ exist in the literature [1, 5].
The defining characteristics of these algorithms is their re-
liance on the the sample covariance matrix R, given below,

as sufficient statistics:

R =
1
N
Y Y ′ = Z + σ2I, (4)

where Z = A(θ)XX ′A′(θ)/N is a rank K positive semi-
definite matrix. Example algorithms include minimum vari-
ance distortionless response (MVDR), multiple signal char-
acterization (MUSIC), and maximum likelihood (ML).

To determine the source bearings, the MVDR algorithm
calculates a power vs. bearing pattern via

PMVDR(θ;R) =
[
a′(θ)R−1a(θ)

]−1
, (5)

whose local maxima indicates the locations. In contrast, the
MUSIC algorithm relies on a partial eigenvector expansion
of R (in a similar fashion to (5)) corresponding to the noise
subspace by assuming K. The ML solution minimizes the
mean squared data error, which can be directly written as a
function ofR [1].

2.3. Matrix completion from incomplete data

Here, we review the recent results on noisy matrix completion
that will be necessary to quantify the performance of our ap-
proach. We start by assuming that we only observe a partial
subset of the entries of a matrix Z (P × P ). Clearly, in the
general case, we would be at a loss to provide any meaningful
estimate of the missing entries. However, in the special case
where Z is of low rank and the observations are noiseless,
M = O

(
P log2 P

)
randomly chosen entries are sufficient to

recover all the entries of Z with probability at least 1 − P−3

via the following convex optimization problem [3]

Ẑ = arg min ‖Z′‖? s.t. PΩ(Z) = PΩ(Z′), (6)

where ‖ · ‖? is the nuclear norm, Ω is the set of observed
elements in the matrix Z, and PΩ(Z) retrieves the elements
of Ω from Z.

In this paper, we are directly interested in the case when
the observed entries have errors,

[U]ij = [Z]ij + [E]ij , (7)

where [E]ij is iid zero mean Gaussian with variance τ2.
For this case, Candes and Yaniv [4] empirically show that
stable recovery is possible when the size of the set Ω is a
constant times the degrees of freedom. For a P × P corre-
lation matrix Z of rank K, the number of required entries
is O

(
K (2P −K)

)
. The matrix completion is then accom-

plished by solving:

Ẑ = arg min
1
2
||PΩ(Z′ −U)||2F + µ||Z′||?, (8)

where ‖ · ‖F is the Frobenius norm. Moreover, the relaxation
parameter is chosen as µ =

√
2m/Pτ so that ‖PΩ(Ẑ −

U)‖F ≤ δ where δ =
√
m+

√
8mτ , where m = |Ω|.

The estimation error can then be approximately bounded by

‖Z− Ẑ‖ ≤ 4
√

P 3

m δ ; see [4].



3. DISTRIBUTED COVARIANCE ESTIMATION ON
GRAPHS

Although the bearing estimation algorithms discussed in Sec-
tion 2 have rigorous estimation guarantees [1], they have an
important disadvantage: they require centralized processing
where a fusion center collects Y in order to calculateR. The
centralized nature of these algorithms result in increased com-
munication costs with many bottlenecks and critical points of
failure. In contrast, we seek distributed algorithms since they
provide the ability to scale, reduce vulnerability, decrease
communication, and share processing responsibilities among
individual sensors as the number of sensors increase.

Suppose now we are given a communication graph G,
where the edges correspond to communication links and the
vertices correspond to the sensors with some pre-determined
hierarchical ordering of the sensors, e.g., a routing scheme.
Distributed processing over G implies that the sensors only
communicate with their immediate neighbors on the graph
that share an edge with a message passing scheme that use
constant bandwidth. The graph structure G could be con-
structed with multiple objectives in mind, such as minimiz-
ing communication costs, satisfying a minimum connectiv-
ity probability, etc. In general, the number of edges is much
smaller than

(
P
2

)
for practical purposes.

3.1. Covariance estimation on trees

To demonstrate the ideas more concretely, we focus on tree
structured graphs T , obtained by, say, Prim’s Algorithm or
Dijkstra’s algorithm [2]. We use a bottom-up communication
hierarchy where the children nodes communicate to their par-
ents their observations as well as the inherited matrix entries
from their own children. In this case, a parent sensor can im-
mediately compute the cross-correlation terms for the matrix
R corresponding to itself and its children nodes, along with
all pairwise relations between children. This scheme contin-
ues recursively until the root node is reached.

It is easy to see that the number of observed entries in a
covariance matrix is lower bounded by 3P−2, corresponding
to a chain graph. Under random deployment, Prim or Dijkstra
algorithms provide much higher connectivity than this lower
bound (empirically enough entries for two targets). Higher
target numbers, however, may require a larger number of en-
tries due to the increased rank of the covariance matrix. When
this occurs, signal information can be passed up through mul-
tiple levels of the tree instead of only to the parent. Control-
ling the amount of information sent through the tree allows us
to create a tradeoff between the communication cost and the
number of observed entries in the covariance matrix. Passing
all signal information in the tree reveals all entries of the co-
variance matrix but incurs the maximum communication cost.

3.2. Recovering the full covariance matrix

As a result of the tree message passing scheme, the root node
observes a partial set of entries Ω of the covariance matrix
R where Ω is determined by the edges of the communication
tree T . The number of observed entries is defined by m =
|Ω|. The following lemmas characterize the observed entries
of R and the recovered covariance matrix R̂. Proofs of these
lemmas can be found in [6].

Lemma 1 (Diagonal entries of R). Define U = R − σ2I .
[U]pp (p = 1, . . . , P ) is approximately zero mean Gaussian
distributed with variance τ2

pp ≤ 4N−1 [R]pp σ
2.

Lemma 2 (Off-diagonal entries ofR). [R]pl (p, l = 1, . . . , P ;
p 6= l) is approximately zero mean Gaussian distributed with
variance τ2

pl ≤ N−1
(

[R]pp + [R]ll
)
σ2 + σ4.

Lemma 3 (Frobenius norm ofPΩ (E)). Define δ = ‖PΩ (E) ‖F.

Then, w.h.p., δ ≤ 2σN−1/2 maxp
√

[R]pp
(
m+

√
8m
)
.

Lemma 4 (Estimation guarantee on R̂). With δ defined as
above and with Ê = R − R̂, we have the following recon-

struction guarantee, ‖Ê‖F ≤ 4
√

2P 3+mP
m δ + 2δ.

In our approach, the root node solves the optimiza-
tion problem in (8) and reports R̂ + σ2I . We use τ2 =
max(τ2

pp, τ
2
pl) as characterized in the lemmas 1 and 2 when

choosing the relaxation parameter µ.
We can now bound the performance of the beamformer

operating on the reconstructed correlation matrix. We fur-
ther assume that ‖R−1Ê‖F < 1. This condition implies
that R is sufficiently well conditioned a posteriori via di-
agonal loading, which is common in the application of the
MVDR beamformer. We denote R′ = R + γI as the reg-
ularized covariance matrix. As shown in [6], γ satisfying

γ > ‖E‖F ≤ 4
√

2P 3+mP
m δ + 2δ is sufficient to guaran-

tee ‖R−1Ê‖F < 1. Often lower values of γ can be safely
used. Defining κ(R′) as the condition number of R′ we can
show that κ(R′) ≈ P/K+γ+σ2

γ+σ2 .
With the above background, we can state the following

lemma using some results from matrix perturbation theory
[7]:

Lemma 5. Defining κ(R′) as the condition number of R′

and assuming that ‖R′−1Ê‖F < 1. Then we have the fol-
lowing bound on beamformer deviation:∣∣∣PMVDR(θ;R′)− PMVDR(θ; R̂′)

∣∣∣ ≤ κ‖R′−1Ê‖F

1−‖R′−1Ê‖F

PMVDR(θ;R′).

Our experiments with synthetic and real data show that
this worst-case bound is somewhat pessimistic and that the ac-
tual deviation from the ideal beampattern is often quite small.
We conjecture that the errors introduced in the matrix com-
pletion process has an underlying structure that should be ex-
ploited to obtain tighter bounds.



4. SIMULATION RESULTS
4.1. Communication Tradeoffs
As explained in Section 3, using a tree based routing ap-
proaches in conjunction with matrix completion we can form
a tradeoff between communication costs and the number of
entries observed in our autocorrelation matrix, R. This, in
turn, affords a tradeoff between the overall communication
cost and the resulting accuracy of our estimator. Here, we
present simulation results to demonstrate this tradeoff for var-
ious values of the array signal to noise ratio. Each simulation
trial uses a random network of P = 30 sensors which we
link together via Dijkstra’s algorithm. The desired number of
observed matrix entries determines how much information is
passed up the tree. Observing the full matrix corresponds to
passing all signals up to the fusion center, with a communi-
cation cost equal to the full cost of the Dijkstra tree. Each
simulation point is averaged over 1000 trials.
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Fig. 1. Communication and accuracy tradeoffs.

4.2. Bearing estimation experiments

We present bearing estimation results for both synthetic and
field data. For synthetic data, we simulate two targets moving
on a circular track and estimate bearing angles at several time
steps. We deploy a random array of P = 30 and connect
the network via Prim’s algorithm. We then pass inter-sensor
messages as described in Section 3 and observe 200 out of a
possible 900 matrix entries. The root node performs matrix
completion to obtain R̂ which then serves as the input to its
beamformer. We use R′ = R + 0.1I when beamforming.
Our results, displayed in Figure 2, show that bearing estimates
with our approach are quite close to the full data case.
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Fig. 2. Two-target bearing tracks.

Next, we demonstrate our approach on acoustic field data
corresponding to a multi-vehicle convoy moving along an el-
liptical track observed by a network of 10 sensors. The sen-
sors are distributed in a circle of 3 m diameter with the refer-
ence sensor in the center of the ring. Because both Dijkstra’s
and Prim’s algorithm would force full connectivity for this
deployment, we enforce sparsity as shown in 3(a) resulting
in observing 40 out of the 100 entries of the correlation ma-
trix. No diagonal loading was used in this example. Estimate
results are displayed in Figure 3(b).
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Fig. 3. Field data results.

5. CONCLUSION

We discussed distributed low-rank covariance estimation over
tree-based graphs via matrix completion. Our approach ex-
ploited the ability to stably reconstruct low rank matrices
from highly incomplete partial observations. We quantified
how additive white Gaussian noise in the sensor observations
directly affect the matrix completion performance. We ob-
served empirically that the noise is well controlled and has
very little effect on the bearing estimation of the MVDR
beamformer. As future work, we will investigate other graph
structures, such as the Bethe lattice [8] and loopy graphs.
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